Libav
lagarith.c
Go to the documentation of this file.
1 /*
2  * Lagarith lossless decoder
3  * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "mathops.h"
33 #include "huffyuvdsp.h"
34 #include "lagarithrac.h"
35 #include "thread.h"
36 
38  FRAME_RAW = 1,
49 };
50 
51 typedef struct LagarithContext {
54  int zeros;
55  int zeros_rem;
60 
69 static uint64_t softfloat_reciprocal(uint32_t denom)
70 {
71  int shift = av_log2(denom - 1) + 1;
72  uint64_t ret = (1ULL << 52) / denom;
73  uint64_t err = (1ULL << 52) - ret * denom;
74  ret <<= shift;
75  err <<= shift;
76  err += denom / 2;
77  return ret + err / denom;
78 }
79 
88 static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
89 {
90  uint64_t l = x * (mantissa & 0xffffffff);
91  uint64_t h = x * (mantissa >> 32);
92  h += l >> 32;
93  l &= 0xffffffff;
94  l += 1 << av_log2(h >> 21);
95  h += l >> 32;
96  return h >> 20;
97 }
98 
99 static uint8_t lag_calc_zero_run(int8_t x)
100 {
101  return (x << 1) ^ (x >> 7);
102 }
103 
104 static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
105 {
106  static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
107  int i;
108  int bit = 0;
109  int bits = 0;
110  int prevbit = 0;
111  unsigned val;
112 
113  for (i = 0; i < 7; i++) {
114  if (prevbit && bit)
115  break;
116  prevbit = bit;
117  bit = get_bits1(gb);
118  if (bit && !prevbit)
119  bits += series[i];
120  }
121  bits--;
122  if (bits < 0 || bits > 31) {
123  *value = 0;
124  return -1;
125  } else if (bits == 0) {
126  *value = 0;
127  return 0;
128  }
129 
130  val = get_bits_long(gb, bits);
131  val |= 1 << bits;
132 
133  *value = val - 1;
134 
135  return 0;
136 }
137 
139 {
140  int i, j, scale_factor;
141  unsigned prob, cumulative_target;
142  unsigned cumul_prob = 0;
143  unsigned scaled_cumul_prob = 0;
144 
145  rac->prob[0] = 0;
146  rac->prob[257] = UINT_MAX;
147  /* Read probabilities from bitstream */
148  for (i = 1; i < 257; i++) {
149  if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
150  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
151  return -1;
152  }
153  if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
154  av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
155  return -1;
156  }
157  cumul_prob += rac->prob[i];
158  if (!rac->prob[i]) {
159  if (lag_decode_prob(gb, &prob)) {
160  av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
161  return -1;
162  }
163  if (prob > 257 - i)
164  prob = 257 - i;
165  for (j = 0; j < prob; j++)
166  rac->prob[++i] = 0;
167  }
168  }
169 
170  if (!cumul_prob) {
171  av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
172  return -1;
173  }
174 
175  /* Scale probabilities so cumulative probability is an even power of 2. */
176  scale_factor = av_log2(cumul_prob);
177 
178  if (cumul_prob & (cumul_prob - 1)) {
179  uint64_t mul = softfloat_reciprocal(cumul_prob);
180  for (i = 1; i < 257; i++) {
181  rac->prob[i] = softfloat_mul(rac->prob[i], mul);
182  scaled_cumul_prob += rac->prob[i];
183  }
184 
185  scale_factor++;
186  cumulative_target = 1 << scale_factor;
187 
188  if (scaled_cumul_prob > cumulative_target) {
189  av_log(rac->avctx, AV_LOG_ERROR,
190  "Scaled probabilities are larger than target!\n");
191  return -1;
192  }
193 
194  scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
195 
196  for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
197  if (rac->prob[i]) {
198  rac->prob[i]++;
199  scaled_cumul_prob--;
200  }
201  /* Comment from reference source:
202  * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
203  * // since the compression change is negligible and fixing it
204  * // breaks backwards compatibility
205  * b =- (signed int)b;
206  * b &= 0xFF;
207  * } else {
208  * b++;
209  * b &= 0x7f;
210  * }
211  */
212  }
213  }
214 
215  rac->scale = scale_factor;
216 
217  /* Fill probability array with cumulative probability for each symbol. */
218  for (i = 1; i < 257; i++)
219  rac->prob[i] += rac->prob[i - 1];
220 
221  return 0;
222 }
223 
224 static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
225  uint8_t *diff, int w, int *left,
226  int *left_top)
227 {
228  /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
229  * However the &0xFF on the gradient predictor yealds incorrect output
230  * for lagarith.
231  */
232  int i;
233  uint8_t l, lt;
234 
235  l = *left;
236  lt = *left_top;
237 
238  for (i = 0; i < w; i++) {
239  l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
240  lt = src1[i];
241  dst[i] = l;
242  }
243 
244  *left = l;
245  *left_top = lt;
246 }
247 
248 static void lag_pred_line(LagarithContext *l, uint8_t *buf,
249  int width, int stride, int line)
250 {
251  int L, TL;
252 
253  if (!line) {
254  int i, align_width = (width - 1) & ~31;
255  /* Left prediction only for first line */
256  L = l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
257  for (i = align_width + 1; i < width; i++)
258  buf[i] += buf[i - 1];
259  } else {
260  /* Left pixel is actually prev_row[width] */
261  L = buf[width - stride - 1];
262 
263  if (line == 1) {
264  /* Second line, left predict first pixel, the rest of the line is median predicted
265  * NOTE: In the case of RGB this pixel is top predicted */
266  TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
267  } else {
268  /* Top left is 2 rows back, last pixel */
269  TL = buf[width - (2 * stride) - 1];
270  }
271 
272  add_lag_median_prediction(buf, buf - stride, buf,
273  width, &L, &TL);
274  }
275 }
276 
278  int width, int stride, int line,
279  int is_luma)
280 {
281  int L, TL;
282 
283  if (!line) {
284  int i, align_width;
285  if (is_luma) {
286  buf++;
287  width--;
288  }
289 
290  align_width = (width - 1) & ~31;
291  l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
292 
293  for (i = align_width + 1; i < width; i++)
294  buf[i] += buf[i - 1];
295 
296  return;
297  }
298  if (line == 1) {
299  const int HEAD = is_luma ? 4 : 2;
300  int i;
301 
302  L = buf[width - stride - 1];
303  TL = buf[HEAD - stride - 1];
304  for (i = 0; i < HEAD; i++) {
305  L += buf[i];
306  buf[i] = L;
307  }
308  for (; i < width; i++) {
309  L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
310  TL = buf[i - stride];
311  buf[i] = L;
312  }
313  } else {
314  TL = buf[width - (2 * stride) - 1];
315  L = buf[width - stride - 1];
316  l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
317  }
318 }
319 
321  uint8_t *dst, int width, int stride,
322  int esc_count)
323 {
324  int i = 0;
325  int ret = 0;
326 
327  if (!esc_count)
328  esc_count = -1;
329 
330  /* Output any zeros remaining from the previous run */
331 handle_zeros:
332  if (l->zeros_rem) {
333  int count = FFMIN(l->zeros_rem, width - i);
334  memset(dst + i, 0, count);
335  i += count;
336  l->zeros_rem -= count;
337  }
338 
339  while (i < width) {
340  dst[i] = lag_get_rac(rac);
341  ret++;
342 
343  if (dst[i])
344  l->zeros = 0;
345  else
346  l->zeros++;
347 
348  i++;
349  if (l->zeros == esc_count) {
350  int index = lag_get_rac(rac);
351  ret++;
352 
353  l->zeros = 0;
354 
355  l->zeros_rem = lag_calc_zero_run(index);
356  goto handle_zeros;
357  }
358  }
359  return ret;
360 }
361 
363  const uint8_t *src, const uint8_t *src_end,
364  int width, int esc_count)
365 {
366  int i = 0;
367  int count;
368  uint8_t zero_run = 0;
369  const uint8_t *src_start = src;
370  uint8_t mask1 = -(esc_count < 2);
371  uint8_t mask2 = -(esc_count < 3);
372  uint8_t *end = dst + (width - 2);
373 
374 output_zeros:
375  if (l->zeros_rem) {
376  count = FFMIN(l->zeros_rem, width - i);
377  if (end - dst < count) {
378  av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
379  return AVERROR_INVALIDDATA;
380  }
381 
382  memset(dst, 0, count);
383  l->zeros_rem -= count;
384  dst += count;
385  }
386 
387  while (dst < end) {
388  i = 0;
389  while (!zero_run && dst + i < end) {
390  i++;
391  if (src + i >= src_end)
392  return AVERROR_INVALIDDATA;
393  zero_run =
394  !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
395  }
396  if (zero_run) {
397  zero_run = 0;
398  i += esc_count;
399  memcpy(dst, src, i);
400  dst += i;
401  l->zeros_rem = lag_calc_zero_run(src[i]);
402 
403  src += i + 1;
404  goto output_zeros;
405  } else {
406  memcpy(dst, src, i);
407  src += i;
408  dst += i;
409  }
410  }
411  return src_start - src;
412 }
413 
414 
415 
417  int width, int height, int stride,
418  const uint8_t *src, int src_size)
419 {
420  int i = 0;
421  int read = 0;
422  uint32_t length;
423  uint32_t offset = 1;
424  int esc_count = src[0];
425  GetBitContext gb;
426  lag_rac rac;
427  const uint8_t *src_end = src + src_size;
428 
429  rac.avctx = l->avctx;
430  l->zeros = 0;
431 
432  if (esc_count < 4) {
433  length = width * height;
434  if (esc_count && AV_RL32(src + 1) < length) {
435  length = AV_RL32(src + 1);
436  offset += 4;
437  }
438 
439  init_get_bits(&gb, src + offset, src_size * 8);
440 
441  if (lag_read_prob_header(&rac, &gb) < 0)
442  return -1;
443 
444  ff_lag_rac_init(&rac, &gb, length - stride);
445 
446  for (i = 0; i < height; i++)
447  read += lag_decode_line(l, &rac, dst + (i * stride), width,
448  stride, esc_count);
449 
450  if (read > length)
452  "Output more bytes than length (%d of %"PRIu32")\n", read,
453  length);
454  } else if (esc_count < 8) {
455  esc_count -= 4;
456  if (esc_count > 0) {
457  /* Zero run coding only, no range coding. */
458  for (i = 0; i < height; i++) {
459  int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
460  src_end, width, esc_count);
461  if (res < 0)
462  return res;
463  src += res;
464  }
465  } else {
466  if (src_size < width * height)
467  return AVERROR_INVALIDDATA; // buffer not big enough
468  /* Plane is stored uncompressed */
469  for (i = 0; i < height; i++) {
470  memcpy(dst + (i * stride), src, width);
471  src += width;
472  }
473  }
474  } else if (esc_count == 0xff) {
475  /* Plane is a solid run of given value */
476  for (i = 0; i < height; i++)
477  memset(dst + i * stride, src[1], width);
478  /* Do not apply prediction.
479  Note: memset to 0 above, setting first value to src[1]
480  and applying prediction gives the same result. */
481  return 0;
482  } else {
484  "Invalid zero run escape code! (%#x)\n", esc_count);
485  return -1;
486  }
487 
488  if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
489  for (i = 0; i < height; i++) {
490  lag_pred_line(l, dst, width, stride, i);
491  dst += stride;
492  }
493  } else {
494  for (i = 0; i < height; i++) {
495  lag_pred_line_yuy2(l, dst, width, stride, i,
496  width == l->avctx->width);
497  dst += stride;
498  }
499  }
500 
501  return 0;
502 }
503 
513  void *data, int *got_frame, AVPacket *avpkt)
514 {
515  const uint8_t *buf = avpkt->data;
516  int buf_size = avpkt->size;
517  LagarithContext *l = avctx->priv_data;
518  ThreadFrame frame = { .f = data };
519  AVFrame *const p = data;
520  uint8_t frametype = 0;
521  uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
522  uint32_t offs[4];
523  uint8_t *srcs[4], *dst;
524  int i, j, planes = 3;
525 
526  p->key_frame = 1;
527 
528  frametype = buf[0];
529 
530  offset_gu = AV_RL32(buf + 1);
531  offset_bv = AV_RL32(buf + 5);
532 
533  switch (frametype) {
534  case FRAME_SOLID_RGBA:
535  avctx->pix_fmt = AV_PIX_FMT_RGB32;
536 
537  if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
538  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
539  return -1;
540  }
541 
542  dst = p->data[0];
543  for (j = 0; j < avctx->height; j++) {
544  for (i = 0; i < avctx->width; i++)
545  AV_WN32(dst + i * 4, offset_gu);
546  dst += p->linesize[0];
547  }
548  break;
549  case FRAME_ARITH_RGBA:
550  avctx->pix_fmt = AV_PIX_FMT_RGB32;
551  planes = 4;
552  offset_ry += 4;
553  offs[3] = AV_RL32(buf + 9);
554  case FRAME_ARITH_RGB24:
555  case FRAME_U_RGB24:
556  if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
557  avctx->pix_fmt = AV_PIX_FMT_RGB24;
558 
559  if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
560  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
561  return -1;
562  }
563 
564  offs[0] = offset_bv;
565  offs[1] = offset_gu;
566  offs[2] = offset_ry;
567 
568  l->rgb_stride = FFALIGN(avctx->width, 16);
570  l->rgb_stride * avctx->height * planes + 1);
571  if (!l->rgb_planes) {
572  av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
573  return AVERROR(ENOMEM);
574  }
575  for (i = 0; i < planes; i++)
576  srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
577  if (offset_ry >= buf_size ||
578  offset_gu >= buf_size ||
579  offset_bv >= buf_size ||
580  (planes == 4 && offs[3] >= buf_size)) {
581  av_log(avctx, AV_LOG_ERROR,
582  "Invalid frame offsets\n");
583  return AVERROR_INVALIDDATA;
584  }
585  for (i = 0; i < planes; i++)
586  lag_decode_arith_plane(l, srcs[i],
587  avctx->width, avctx->height,
588  -l->rgb_stride, buf + offs[i],
589  buf_size - offs[i]);
590  dst = p->data[0];
591  for (i = 0; i < planes; i++)
592  srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
593  for (j = 0; j < avctx->height; j++) {
594  for (i = 0; i < avctx->width; i++) {
595  uint8_t r, g, b, a;
596  r = srcs[0][i];
597  g = srcs[1][i];
598  b = srcs[2][i];
599  r += g;
600  b += g;
601  if (frametype == FRAME_ARITH_RGBA) {
602  a = srcs[3][i];
603  AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
604  } else {
605  dst[i * 3 + 0] = r;
606  dst[i * 3 + 1] = g;
607  dst[i * 3 + 2] = b;
608  }
609  }
610  dst += p->linesize[0];
611  for (i = 0; i < planes; i++)
612  srcs[i] += l->rgb_stride;
613  }
614  break;
615  case FRAME_ARITH_YUY2:
616  avctx->pix_fmt = AV_PIX_FMT_YUV422P;
617 
618  if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
619  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
620  return -1;
621  }
622 
623  if (offset_ry >= buf_size ||
624  offset_gu >= buf_size ||
625  offset_bv >= buf_size) {
626  av_log(avctx, AV_LOG_ERROR,
627  "Invalid frame offsets\n");
628  return AVERROR_INVALIDDATA;
629  }
630 
631  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
632  p->linesize[0], buf + offset_ry,
633  buf_size - offset_ry);
634  lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
635  avctx->height, p->linesize[1],
636  buf + offset_gu, buf_size - offset_gu);
637  lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
638  avctx->height, p->linesize[2],
639  buf + offset_bv, buf_size - offset_bv);
640  break;
641  case FRAME_ARITH_YV12:
642  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
643 
644  if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
645  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
646  return -1;
647  }
648 
649  if (offset_ry >= buf_size ||
650  offset_gu >= buf_size ||
651  offset_bv >= buf_size) {
652  av_log(avctx, AV_LOG_ERROR,
653  "Invalid frame offsets\n");
654  return AVERROR_INVALIDDATA;
655  }
656 
657  lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
658  p->linesize[0], buf + offset_ry,
659  buf_size - offset_ry);
660  lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
661  avctx->height / 2, p->linesize[2],
662  buf + offset_gu, buf_size - offset_gu);
663  lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
664  avctx->height / 2, p->linesize[1],
665  buf + offset_bv, buf_size - offset_bv);
666  break;
667  default:
668  av_log(avctx, AV_LOG_ERROR,
669  "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
670  return -1;
671  }
672 
673  *got_frame = 1;
674 
675  return buf_size;
676 }
677 
679 {
680  LagarithContext *l = avctx->priv_data;
681  l->avctx = avctx;
682 
684 
685  return 0;
686 }
687 
689 {
690  LagarithContext *l = avctx->priv_data;
691 
692  av_freep(&l->rgb_planes);
693 
694  return 0;
695 }
696 
698  .name = "lagarith",
699  .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
700  .type = AVMEDIA_TYPE_VIDEO,
701  .id = AV_CODEC_ID_LAGARITH,
702  .priv_data_size = sizeof(LagarithContext),
706  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
707 };
AVCodecContext * avctx
Definition: lagarithrac.h:40
static uint8_t lag_get_rac(lag_rac *l)
Decode a single byte from the compressed plane described by *l.
Definition: lagarithrac.h:73
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:54
This structure describes decoded (raw) audio or video data.
Definition: frame.h:135
void ff_lag_rac_init(lag_rac *l, GetBitContext *gb, int length)
Definition: lagarithrac.c:33
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:129
AVFrame * f
Definition: thread.h:36
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:67
int size
Definition: avcodec.h:974
av_cold void ff_huffyuvdsp_init(HuffYUVDSPContext *c)
Definition: huffyuvdsp.c:123
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1270
int stride
Definition: mace.c:144
AVCodec.
Definition: avcodec.h:2812
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, int width, int height, int stride, const uint8_t *src, int src_size)
Definition: lagarith.c:416
int zeros
number of consecutive zero bytes encountered
Definition: lagarith.c:54
#define FFALIGN(x, a)
Definition: common.h:62
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
AVCodec ff_lagarith_decoder
Definition: lagarith.c:697
static int decode(MimicContext *ctx, int quality, int num_coeffs, int is_iframe)
Definition: mimic.c:275
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, const uint8_t *src, const uint8_t *src_end, int width, int esc_count)
Definition: lagarith.c:362
Lagarith range decoder.
uint8_t bits
Definition: crc.c:251
uint8_t
#define av_cold
Definition: attributes.h:66
solid grayscale color frame
Definition: lagarith.c:42
static void lag_pred_line(LagarithContext *l, uint8_t *buf, int width, int stride, int line)
Definition: lagarith.c:248
Multithreading support functions.
#define b
Definition: input.c:52
int zeros_rem
number of zero bytes remaining to output
Definition: lagarith.c:55
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:684
const char data[16]
Definition: mxf.c:70
unsigned scale
Number of bits of precision in range.
Definition: lagarithrac.h:43
uint8_t * data
Definition: avcodec.h:973
bitstream reader API header.
#define r
Definition: input.c:51
uncompressed
Definition: lagarith.c:38
LagarithFrameType
Definition: lagarith.c:37
arithmetic coded RGB24
Definition: lagarith.c:41
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
#define AVERROR(e)
Definition: error.h:43
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top)
Definition: lagarith.c:224
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:145
g
Definition: yuv2rgb.c:535
int(* add_hfyu_left_pred)(uint8_t *dst, const uint8_t *src, int w, int left)
Definition: huffyuvdsp.h:30
AVCodecContext * avctx
Definition: lagarith.c:52
Definition: graph2dot.c:49
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
const char * name
Name of the codec implementation.
Definition: avcodec.h:2819
static av_cold int lag_decode_init(AVCodecContext *avctx)
Definition: lagarith.c:678
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:69
arithmetic coded YV12
Definition: lagarith.c:47
int rgb_planes_allocated
Definition: lagarith.c:57
static uint64_t softfloat_reciprocal(uint32_t denom)
Compute the 52bit mantissa of 1/(double)denom.
Definition: lagarith.c:69
obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) ...
Definition: lagarith.c:44
#define FFMIN(a, b)
Definition: common.h:57
int width
picture width / height.
Definition: avcodec.h:1229
arithmetic coded YUY2
Definition: lagarith.c:40
static int lag_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Decode a frame.
Definition: lagarith.c:512
#define AV_RL32
Definition: intreadwrite.h:146
static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
Definition: lagarith.c:104
#define L(x)
Definition: vp56_arith.h:36
static int width
Definition: utils.c:156
static int lag_decode_line(LagarithContext *l, lag_rac *rac, uint8_t *dst, int width, int stride, int esc_count)
Definition: lagarith.c:320
Libavcodec external API header.
uint32_t prob[258]
Table of cumulative probability for each symbol.
Definition: lagarithrac.h:50
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:153
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
(uint32_t)(x*f), where f has the given mantissa, and exponent 0 Used in combination with softfloat_re...
Definition: lagarith.c:88
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
main external API structure.
Definition: avcodec.h:1050
static void close(AVCodecParserContext *s)
Definition: h264_parser.c:490
#define AV_PIX_FMT_RGB32
Definition: pixfmt.h:222
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:271
int index
Definition: gxfenc.c:72
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:375
#define mid_pred
Definition: mathops.h:98
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
Definition: lagarith.c:138
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:304
HuffYUVDSPContext hdsp
Definition: lagarith.c:53
uint8_t * rgb_planes
Definition: lagarith.c:56
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
int height
Definition: gxfenc.c:72
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:388
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
static av_cold int lag_decode_end(AVCodecContext *avctx)
Definition: lagarith.c:688
#define CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:755
#define AV_WN32(p, v)
Definition: intreadwrite.h:338
static av_cold int init(AVCodecParserContext *s)
Definition: h264_parser.c:499
solid non-grayscale color frame
Definition: lagarith.c:43
#define MKBETAG(a, b, c, d)
Definition: common.h:239
void * priv_data
Definition: avcodec.h:1092
static uint8_t lag_calc_zero_run(int8_t x)
Definition: lagarith.c:99
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf, int width, int stride, int line, int is_luma)
Definition: lagarith.c:277
#define av_log2
Definition: intmath.h:85
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:191
solid RGBA color frame
Definition: lagarith.c:46
arithmetic coded RGBA
Definition: lagarith.c:45
reduced resolution YV12 frame
Definition: lagarith.c:48
unaligned RGB24
Definition: lagarith.c:39
void(* add_hfyu_median_pred)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top)
Definition: huffyuvdsp.h:27
This structure stores compressed data.
Definition: avcodec.h:950
for(j=16;j >0;--j)